首页 >> 优选问答 >

拉里的公式(费拉里公式)

2022-10-31 20:56:48

问题描述:

拉里的公式(费拉里公式),跪求万能的网友,帮帮我!

最佳答案

推荐答案

2022-10-31 20:56:48

大家好,小金来为大家解答以上的问题。拉里的公式,费拉里公式这个很多人还不知道,现在让我们一起来看看吧!

1、卡尔丹公式诞生后,卡尔丹的学生费拉里便发明了一元四次方程的求根公式。

2、【费拉里公式】一元四次方程aX^4+bX^3+cX^2+dX+e=0,(a,b,c,d,e∈R,且a≠0)。

3、令a=1,则X^4+bX^3+cX^2+dX+e=0,此方程是以下两个一元二次方程的解。

4、2X^2+(b+M)X+2(y+N/M)=0;2X^2+(b—M)X+2(y—N/M)=0。

5、其中M=√(8y+b^2—4c);N=by—d,(M≠0)。

6、y是一元三次方程8y^3—4cy^2—(8e—2bd)y—e(b^2—4c)—d^2=0的任一实根。

7、 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如aX^3+bX^2+cX+d=0的标准型一元三次方程形式化为X^3+pX+q=0的特殊型。

8、卡尔丹公式一元三次方程X^3+pX+q=0 (p、q∈R)判别式Δ=(q/2)^2+(p/3)^3【卡尔丹公式】X1=(Y1)^(1/3)+(Y2)^(1/3);X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

9、一般式一元三次方程aX ^3+bX ^2+cX+d=0令X=Y—b/(3a)代入上式,可化为适合卡尔丹公式求解的特殊型三次方程Y^3+pY+q=0。

10、【盛金公式】三次方程应用广泛。

11、用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。

12、范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

13、盛金公式 盛金判别法盛金定理当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方(WhenΔ=0,Shengjin’s formula is not with radical sign,and efficiency higher for solving an equation)。

14、与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。

15、重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。

16、盛金公式解法的以上结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。

17、国内统一刊号:CN46-1014),第91—98页。

18、范盛金,一元三次方程的新求根公式与新判别法。

19、(NATURAL SCIENCE JOURNAL OF HAINAN TEACHERES COLLEGE,Hainan Province,China. Vol. 2,No. 2;Dec,1989),A new extracting formula and a new distinguishing means on the one variable cubic equation., Fan Shengjin. PP·91—98 .。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章